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1. SUMMARY

Developments in the area of signature suppression make it camouflaged targets. In addition, other descriptors are used to
progressively more difficult to recognize targets. In order to characterize man made objects. These often have straight lines
obtain a sufficient low degree of false alarms it is necessary to and edges.
observe spatial and spectral properties. There is a genuine need
to use spatial properties when analyzing the difference Using texture information together with other kinds of
between a target area and a background area. This is more information such as multispectral and temporal features makes
relevant today since modern signature suppression techniques the analysis and the assessment possible of signature reduction
have focused on the reduction of distinct features, like hot methods, reconnaissance systems, optical countermeasures,
spots in the infrared band. The approach is to apply texture weapon sights and target seekers.
descriptors to characterize the background and also more or
less camouflaged targets. In addition, other descriptors are The literature contains attempts to performance assessment of
used to characterize man made objects. It is necessary to focus signature suppression techniques [1]. However, there is still a
on features which discriminate targets from the background, need to find good methods. Many make assumptions that
and this demands a more precise description of the background sometimes are difficult to verify.
and the targets than usual. The underlying assumption is that In the future, the developments in the area of signature
an area with more or less observable targets has different suppression will make it more and more difficult to recognize
statistical properties from other areas. Statistical properties targets. In order to obtain a sufficient low degree of false
together with detected target specific features like straight alarms it is necessary to observe spatial and spectral properties.
lines, edges, corners or perhaps reflections from a window Also motion, if present, is an important feature. It is necessary
have to be combined with methods used in data fusion. to focus on features that discriminate targets from the
Experiments with a computer program that estimates the background, and this demands a more detailed description of
statistical differences between targets and background are the background than usual. If time is not critical an approach
described. These differences are computed using a number of using geometrical models is preferable. Given limited time and
different distance measures. resolution one has to rely on measuring selected features. The

underlying assumption is that an area with more or less
44 images from the Search 2 image data set [20] are used and observable targets differs in statistical properties from
mean search time and number of hits are predicted using background areas. Statistical properties together with detected
textural features. The long term goal is to find methods for target specific features like straight edges, comers or perhaps
assessing signature suppression methods, especially in the reflections from a window have to be combined with methods
infrared wavelength area. used in data fusion. Experiments with a computer program

estimating the statistical differences between targets and
Keywords: Terrain, texture, camouflage, assessment, optical, background are described. The long term goal is to find
infrared, signature suppression methods for assessing signature suppression methods,

especially for infrared, but also for visual wavelengths.

2. INTRODUCTION Several ways to analyze images make it possible to assess
different methods of signature reduction. One way is to

This paper describes work done in an attempt to characterize visualize the properties of an image region in different ways.
the spatial variations in natural backgrounds. There is a
genuine need to use spatial properties when analyzing the , Displaying the Wiener spectrum (another name for power
difference between a target area and a background area. This is spectrum) for a region of interest. Specific features may
more relevant today when modern signature suppression show up in such an image.
techniques are often used to reduce more distinctive features
like hot spots in the infrared band which used to be sufficient. a Displaying some relevant image transformations, like
The approach here is to apply texture descriptors to edge or line images.
characterize the background and also to the more or less

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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theory handling target detection in a cluttered environment.
" Displaying a Wiener spectrum for a small region around Theoretical work is often limited to the use of normal

every pixel in the image. In this case it is easier to distributions for the background description. In a low
examine local events in the image. observable situation this is completely unsatisfactory.

"* Compute parameters that describe different features of the
Wiener spectrum, like shape and distribution as examples 3. FEATURES
of descriptors.

There are lots of texture measures in the literature. Designing a
* Using one or several feature measures to define some good set of features could be done using wavelet functions [7].

kind of similarity measure or the opposite distance These are more or less limited in space and frequency
measures, domains. H-towever, computing lots of wavelet functions is

quite computationally expensive.

* Compute some measures that combine (uncamouflaged or
camouflaged) target and background information. Tamura [4] has studied the relationship between textural

features and visual perception. The six features he used were
Visualization of feature images is important because it is coarseness, contrast, directionality. linelikeness, regularity, and

sometimes impossible to condense all the information down to roughness. Hie found good correspondence in a ranking test
a single number. lust like in image quality. color or texture with an implementation of 16 typical digitally computed
analysis, several dimensions are needed to characterize a texture measures. Woodroof [8] has estimated that three

situation accurately. Hlowever, to validate these measures, features should be enough to characterize normal textures.
there is a big demand for simple figures like detection time or Texture measures based on the Fourier transform are shown in

signal-to-noise ratio. [5].

An often-used method to visualize the similarity of a given set It is important to find features that are useful when trying to
of features is trying to isolate targets from their background. In quantify the difference between targets and background.
this case the image is segmented in target areas and
background areas. Relevant properties for man made targets are given in the

following section.

The ultimate validation is of course to test a method in real life
in a target detection experiment. Using images of the scenes. Table 3.1 Characteristic features for manmade targets.
the process can be simulated with a computer. Having a large
enough set of images it is possible to assess probability of Simple features:
detection and also for example false alarm rates etc. - straight edges

- homogeneous regions

- specular reflection (from a planar surface)
Image homogeneous glints (from a uniform surface)

circular structures (=wheels)
Features Compound features:

F unon-fractal (when one zooms in towards a part of a
terrain scene, finer and finer details emerge. This will

distributions not happen to the same degree when looking at man
Multivariate made targets)

- parallel edges
[[edge with at least one honmogenous side

Supervised learning Nonsupervised learning corners (=.junctions of edges)
Motion properties:
- vibrations

Target detection Segmentation - tracks
(clustering) Thermal features properties:

"Hot spots" (from for example exhaust pipe)
tracks

Detection rates Distances b heat from the motor engine, gun barrel etc

Spectral features:
Figure 2.1 Steps used in assessing differences between target variations in reflected radiance and self-radiance
and background

Figure 2.1 shows the different steps included when trying to
find out which features are useful for the description of target
and background properties. Several topics in figure 2.1 are
discussed later.

Previous work in trying to find measures to assess camouflage
effectiveness includes an investigation [2]. Some contributions
in the literature are found [3-6], but none has yet come up with
a sufficient method. A major problem is the lack of a good
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Table 3.2 Characteristic features for natural background. The edge concentration (edgecone) measure is the number of
edge pixels in a local region around the center pixel. Edge-

Terrain background (texture features): based texture measures have been investigated by Pietikiinen
- coarseness and Rosenfeld [9]
- contrast
- directionality The spoke operator (spokemax), as described in [10], is shown
- linelikeness in figure 3.2. It consists of eight spokes and is applied to every
- regularity pixel in the image. Based on in how many spokes an edge
- roughness segment is present, as represented in figure 3.2 by an arc, the
Others: presence of a small circular object may be detected. The output
- Fractal (when one zooms in towards a part of a terrain is an image where the pixel value corresponds to the number of

scene, finer and finer details emerge) hits that occur. Eight hits indicates a more or less closed curve,
non-stationary properties while three or four hits may indicate a corner. Instead of

computing the mean value, the maximum value for each local

Several features can be computed. Which features are useful to region is computed.

compute will be addressed later. About half of the features are
based on image primitives like edges and blobs, that
characterize targets. When computing these features the image
is first for every pixel treated with an operator. The resulting
image is then processed by a lowpass filter or something
similar. This is done to find properties like concentrations of
edges per region. For the background features, a local Wiener
spectrum is computed for a region centered at each pixel. To
save computation time, it is not necessary to compute the
Wiener spectrum at every pixel. A coarse grid complemented
with interpolation is adequate in most cases. In general, a good
estimate is obtained if the grid separation is one fourth of the
region size. When computing most of the features, a masking
function may be applied to each local region to avoid boundary
effects. It corresponds to an aperture function often used in
spectral estimation. Here we use a very simple one, the Figure 3.2 The spoke operator.
Gaussian.

The implementation of the edge coherence (edgecoh) follows
the method given in [11]. Other work in the same direction

3.1 Target related features includes [12,13]. Its purpose is to indicate close parallel edges.
Like the edge concentration feature, the edge image is used as

The target related features used are: mean value, standard input. Instead of summing the edge pixels for any direction,
deviation, edge concentration, blob concentration, spoke here only edges lying along the principal direction are
maximum and edge coherence. summed. If the direction for an edge element differs from the

principal direction it is weighted with respect to the difference
Although being first order statistics the mean value (mean) in direction. If the edge magnitude is denoted magn then the
and standard deviation (dev) are included as they correspond to edge coherence is computed according to,
often used measures.

edgecoh = (magnc - csumt)/ csumn

.... .... ... .... .... ... w here
..... " "" ":: .magnc edge image value in the center of the region

. csumt = Zt(magn. cos(dirdiff))

csumn = •'(rnagn)

:::::::::::::::::::::::::::::::::::::::::and dirdiff= difference in direction between the center pixel
-'-''-''-''-''.''.''.''.''.''.''.''.''.''-.and the others.

Figure 3.1 The inner and outer mask used for computation of
the blob concentration. 3.2 Background related features

The blob operator (blob) is defined with the help of figure 3.1. The background features are all based on the Wiener spectrum,
The mean values for the inner window and the outer window which is the squared magnitude of the local Fourier transform,
are computed and the difference is used as feature value if it and is called power spectrum in signal processing. They are
exceeds a certain low threshold. Due to the sharp boundaries of isotropy, autocorrelation length, fractal dimension, directional
these windows, the blob operator has to be applied to every autocorrelation, main direction, shape, low, medium and high
pixel in the input image. As a texture measure for the local frequency band energy, angular deviation, angular entropy and
region, the mean value of the operator output is computed in Fourier transform energy.
the region.
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Given the spatial frequencies.f.,f, and the Wiener spectrum The directional autocorrelation feature is defined as
magnitude tnagnlý,2 the isotropy is defined as in [14]

isotropy = 255• sl1171 -sUre' dirautoc = const A,

ý(suwn + s1m2) - 4 sumni" The main direction is defined as the direction of the principal
axis of the inertia ellipsoid.

wherewhere f2 agn The shape feature corresponds to the clongeness of the inertia
.x Iellipsoid and is defined as the ratio between the minor and the

major radius

S 711711 ( - , m agn1 /X jV shap e = const. - ,2l - .z2) +2 '1+

sumuv = "f,' .n7a1 Z17 The next three texture measures, low. mnedium and high
frequency band energy are probably the most relevant features

when the problem is to characterize the scale of a pattern. The
When computing the autocorrelation length. basically the Wiener spectrum is summed in three difTfrent frequency
Wiener spectrum is integrated in the angular dimension. Only bands. If the Nyquist frequency is.l, . then the frequency
the fiequency magnitudefY of the spatial fiequency is used. limits are
The feature is defined as

Iowhand: 0 tof,,,./4
autocorr = 10.0. f,, n • . ustn fiunM

midba?7d: f., /4 -f,/2

where
som =Emagnx highhand: fJ2 - ;,,

Figure 3.3 shows the summation areas.

filn l magn /Xt

/Higlhband

.1, ..1 + ...

S=Nyquist frcquency (=hallfthe sampling rate) .'Lowband

Fractal geometry is a popular area for describing terrain and
landscape. In addition, fractal dimension and lacunarity are

two properties that can be comlputed [1 5]. Fractals for texture M" .
analysis have been studied by G/trding 116] and others. The
Wiener spectrum is again treated as a function of the
magnitude of the frequency. The fractal dimension is estimated
from the Wiener spectrum magnitude using a least square fit of
an angular integrated Wiener spectrum.

Figure 3.3 Soununation areas when CO/mlting owhanld,
The lacunarity (fracterr) represents the amount of deviation an A fidhand and JIhi/oMad.
image exhibits from being fractal. Here it is a measure of how
good a line will fit to the angular integrated Wiener spectrum.

The total Fourier transform energy is simply defined as
The three features directional autocorrelation (dirautoc), mean
direction (eigenmean) and shape (shape) are computed using a fieneriy = k . magnsum
mass model of the Wiener spectrum and computing the inertia
ellipsoid. The latter is computed by solving the cigenvalue where k is a constant and
problem prolem,,I,7,,s = log(,nagn --+ 1) I o2(c/c)

A.I-2.A =0
niagn - Wiener spectrum magnitude.

where A = covariance matrix with components a,, Hlere the
Wiener spectrum is used as a distribution function. dc= magnitude at zero frequency.

Solving the eigenvalue equation gives two roots, ?.i and ;2 A high value in ftenergy means that the image has a high

which correspond to the major and minor radius of the inertia degree of variation.

ellipsoid. Knowing that the Wiener spectrum often falls of very rapidly
with frequency, the use of logarithms gives high frequencies
more weight.
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3.3 Feature examples
Because of a high degree of correlation between the different

Figure 3.4 shows an image divided into square grids of local measures, it is advantageous to use distance measures that do
regions and the corresponding Wiener spectra. Normally the not assume independent variables. Using this assumption leads
regions are highly overlapped, with a center distance of one or to incorrect results.
two pixels.

Often it is of interest to use well-known quantities that have
-. . . , • been used for a long time. One such measure is the signal-to-

-' noise ratio (SNR) which is very common in connection with
UL M electrical signals. It is not easy to define an useful SNR for

1,T r F1 L3 images, but attempts have been made by many researchers.

nCnV U•M The different distance measures may be divided into three
UEgroups depending on how an area for target or background, is

characterized. Most common is to use mean value and standard
irmaxim ....... deviation.

SSome measures take explicit consideration to dependent

features. The Mahalanobis distance uses the covariance matrix
Figure 3.4 Local spectra for a typical image. From left: the to characterize one area and uses a feature point for the other.
input image divided into the regions and the local spectra. The original formulation of the Bhattacharrya measure makes

no assumption about the target and background statistics, but
often an approximation is used, where the distributions are

The different background features relate to properties of these assumed to be Gaussian and separable. The Wilks measure is a
spectra. A few examples of feature images are given in figure measure of similarity, which make no assumptions.
3.5.

In table 4.1 the different measures used are listed.

Table 4.1 Listing of several distance measures.

I# Distance Comments
1 Wilks Parameter free

: 2 Bhattacharrya May be parameter free
S3 Mahalanobis Uses the covariance matrix

4 Yaki
i,• A6, •* I& !! .. 5 Disabs Only mean values

6 Dissqr Only mean values7 Tsnr

8 dT sum9 dT-suma

10 dT rss
11 dT rss4
12 Doyle
13 Doyle mod Includes a constant

,o14 Doyle log Includes a constant
- .. 15 Doyle hybrid Includes a constant

Figure 3.5 An image (upper left), isotropy (upper right), 4.1 The distances
autocorrelation length (lower left) and medium frequency
band (lower right). 4.].] Wilks

The following description is given by Liu and Jernigan [14].

4. DISTANCE MEASURES Let xigk be the i:th feature value for the k:th sample of class g,
where i = 1,2,..,m and m = the number of extracted features;

We want to be able to express the difference between two g=1,2,..., G (G classes) and k1l,2,...,ng (number of samples in
areas as a distance using a space defined by some of the class g). N = Z ng is the total number of samples. The Wilks
previously described features. The distance measures, see statistic is a measure of class separability that depends on
[2,21], have different underlying assumptions concerning the within class and between class scatter matrices. The within
feature distribution. If mean values and standard deviations are class scatter matrix, W, and between class scatter matrix, B, are
used to characterize a feature, the distribution is normally defined as
assumed to be Gaussian and the features are assumed to be
independent. Some distances used fall in this class. The reason
for this is the simplifications made when applying them in W = lw-I
practice. By using the covariance matrix, dependent features woxn
can be handled and the Mahalanobis distance is an example of
this class. The Wilks measure uses no assumptions. and
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B =[b~,] r = V(X-p)'1YY(X-P)

where Here x is the feature for a point in the image and the feature
for rest of the image is characterized by the mean value t and

(; 1lg the covariance matrix E. Sometimes a small target area is

= x - - -_ ) compared with a larger background. In this case the target area
W k I I igk jgk Tj, statistics is approximated by its mean value and used for x in

and the expression above.

G; 4.1.4. Yaki
b(jj I , g (- g - X-, '-/, - T- This measure was designed by Yakimovski [19] in order to

g=\ / find out whether two regions are of the same kind or not. He

found a measure, here called yaki for simplicity, that is for one
feature given by

X1g and Xi are the mean value of class g and the total sample

mean value for the i'th feature
1 Ig

Xjg Xg
n.k.t1 where C12 = standard deviation of the feature in the union of

_ _ g region I and region 2

X XiZ k a,= standard deviation of the feature in region I

Xi = _ k=_ C72= standard deviation of the feature in region 2

Assuming Gaussian models for the two regions with mean
The sum of within and between class scatter is the total scatter values of /t and /t, and standard deviations of a, and G2 then
Tmatx of wthe above expression may be evaluated to give
matrix T

(I --P 2 )2  + (Y, -_ C2)2

(4.k T, .-- a) (2.(7, -'T)

(; g • Sometimes the constant I in the above expression is neglected
t,= - I (xgk - i )X ,jgk -X ) in order to make the yaki measure look like a signal-to-noise

g=1 k=I ratio. If several independent features are used this measure will
The Wilks statistics is the ratio of within class scatter to total be given by

scatter; U = W /'TI

yaki = yaki fia,

4.1.2. Bhattacharrya
This is a measure of the overlap between two normalized where yak,, is computed for each feature according to
distributions. If the distributions aref(x) and g(x), the equation above.
Bhattacharrya coefficient b,,,,f is defined as [17].

4.1.5. T-Student snr

/ In one application there was a need for simple measures that
bc.,,f = j (x) g(x)dx were fast to compute and has similarities to simple known

measures, in this case the signal-to-noise ratio. The T-Student

This quantity is related to false alarms and false detections. test [52] is used to see if two distributions are similar. We
define it as

In one implementation the features from the two regions to be
compared are assumed to be Gaussian with mean values ,lu., tsnr = P1 - P 2  a+ 1 )
and standard deviations a1, 72. Assuming independent features
gives the sum of the Bhattacharrya distance for the features Using mean values and standard deviations means that the
between the two areas I and 2. Defining b as -log(b,,,ff) gives underlying distributions are assumed to be normal.

b I +0.5.log C/,,1 0' 2.f 4.1.6. Disabs
4. + C2,fea) 2L 2(,,, f"I C2,ft),w Disabs NsY

where the summation is done over all the features used.
4.1.7 Dissqr

4.1.3 Mahalanobis distance
This distance often occurs in connection with normal
distributions. It is a measure from one point in a distribution to Dissqr A' * ,', t,,1T- )

the center of the distribution. It is defined as [18]. a)
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4.1.8 dTrss Since many measures are used in the comparisons in a later
IJ'f! P) U 2 T)part they will be defined here. The order here is in no way

d-~rs(= N .indicating their relevance.

Other examples of distance computations are given in section
5 and 6.

4.1.9. dT rss4

dT _rss4= 14 0•2TT)B 5. EXPERIMENTS WITH THE SEARCH 2 IMAGE

DATA SET

44 images from the Search_2 data set [20] have been used in
4.1.10. dTsuma some experiments trying to correlate the distances from several

Psu lN + r/.T/B,) distance measures with perceptual measures on detection timedTsuma N TT and hits performance. The images were limited in field-of-
view to have a size of 256*256 pixels. They were selected with
a magnification such that the target width occupied around 25

4.1.11. dT sum to 50 pixels. 5 images are from the BI set, 26 from the B4 set

dT sum= and 13 from the B16 set. The tables in this section summarize
N F,•,. ,lT --IBE + 0 T) experiments using several features and several distance

measures. In several cases an exhaustive search has been
performed to find the highest correlation with the perception

4.1.12. doyle data. Ideally, a model would be derived beforehand, to limit
the search to relevant cases.

doyle= -," ° LT + B) (T "-0-B)2

Table 5.1. Correlation between distance and detection time.

4.1.13. doymod Rank Features Distance Correlation
) I- ) 1 feature

doyle md ±f k I T-OB 1 Isotropy dTsum 0.653

2 Autocorr dT rss4 0.638
where k=0.412. 3 Isotropy dT rss 0.634

4.1.14. doylog 2 features

d11 Dirautoc, isotropy dTsum 0.737d y e log = 1 ý -, n T( C ))-ol -o = N In(u).--l(uB)+'l~ln(nUB))))2 2 Dirautoc, isotropy dT rss 0.709

wr... 3 Ftenergy, isotropy dT rss4 0.705
where k=0.00477. Dirautoc, isotropy dTsuma

3 features
4.1.15. doyhyb I Edgecoh, dirautoc. dTsum 0.756

4 isotropy
doyle_ hybrid= 1. * J r(ln(T )-ln( B)) +k.(CTr--B) 2 Edgecoh, fienergy dTrss4 0.728

J isotropy
Dirautoc, isotropy, dT-rss

where k=0.000023. medfreg
3 Dirautoc, isotropy, dTsuma 0.708

1 lowfreq
4.4. Examples

The three best are shown, just to indicate that there is no big
An example of distance computation is shown in Figure 4.1. difference between the good ones in each experiment. Using
The distances are chosen in an earlier experiment, several features gives a better result but the risk is to adjust to

the current image data set too much. In table 5.1 and 5.2 the

DISTANCES distances are correlated with the detection times.
Some experimentation showed that correlation with the inverse

< Mahalanobis 2.5 of the distances gave a somewhat better result. The

T student snr 1.0 corresponding results are shown in table 5.3 and 5.4. A
nonlinear function may be used, but again an adjustment to the

Bhattacharrya 0.6 current data set has to be avoided. The correlation is given
Yakimowski 0.8 with three decimals in the tables just to indicate small

differences. In practise only the first decimal may be relevant.

Figure 4.1 Distance computation using the isotropy and
autocorrelation length. The inner area outlines the target area.
The background area is defined as the area between the inner
and outer square.
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Table 5.2. Correlation between inverse distance and detection 5.1. Comments
time.
Rank Features Distance Correlation The tests indicate that the best result will be obtained using
1 feature mean and variance based distances. Also it is evident that the

Isotropy dTsuma 0.751 inverse distance gives a better correlation reaching tip to 0.85
2 Isotropy dTsum 0.740 in some case. The different tests also indicate that the features
3 Isotropy dT rss 0.730 isotropy and diraultoc are among the best to use. lfa third
2 features feature will be used. then ftenergy is a natural choice. One

I Dirautoc, isotropy dTsuma 0.877 reason that isotropy is good is that it reacts to small straight

2 Dirautoc, isotropy dlTsun 0.856 edge segments that are common on targets but unusual in the

3 Dirautoc, isotropy doyle 0.852 background.

3 features Better resuLlts may' perhaps be obtained if the whole scene is
I Dirautoc, isotropy, dTsuma 0.880 processed. Now there is no estimation of possible false alarms

shape outside the small background area used.
2 Dirautoc, edgecob, dTsum 0.863

isotropy
Dirautoc, edgecoh, doyle 0.857 6. APPLICATION TO CAMOUFLAGE ASSESSMENT
isotropy
Dirautoc, isotropy, dissqr Figure 6.1 shows a sequence of images where the targets are
mean more and more camouflaged (simulated here by lowering the

target contrast). The features used are directional
Table 5.3. Correlation between distance and hits. autocorrelation distance (dirautoc) and isotropy. In the scatter
Rank Features Distance Correlation image to the right of the image the covariance ellipses for the
l feature target area are plotted
1. Ftenergy dT rss4 0.612
2 Ftenergy dT'rss 0.571
3 Autocorr dlTsum 0.563 "
2 features
1. F-tenergy, isotropy dT rss4 0.688 ,
2 Ftenergy, isotropy dT rss 0.649

3 Dirautoc, isotropy dT sum 0.639
3 features '"
I Dirautoc, ftenergy dT rss 0.695 A A,

iso-tropEy
2 Ftenergy, isotropy, dT rss4 0.692

shape
Edgecoh, ftenergy,
isotropy

3 Autocorr, Dirautoc, dTsum 0.688
isotropy ______ ___

Table 5.4. Correlation between inverse distance and hits. -
Rank Features Distance Correlation
I feature
I. Autocorr disabs. 0.687

dissqr"

2 Ftenergy dT rss 0.684
3 Shape mahala 0.681 ok,
2 feature
1. Dirautoc, isotropy dTsuma 0.783
2 Dirautoc, ftenergy dT rss 0.765
3 Autocorr, dirautoc dT sun 0.754 4. A
3 features
I Fracterr, highfreq, mahala 0.803

isotropy

2 Fractdim, ftenergy, dTsuma 0.802
isotropy 1011 ,
Autocorr, dirautoc. dissqr Am
mean

3 l-tighfreq, isotropy, doylehyb 0.796 Figure 6.1 A sequence of iaoages where the targets are more
mean and more camo/fla7 d (s' oindaot'd here hry lowierin/' the torget

contrast). To the right of the imagecs scatter plots are shown
with covariance ellipses for the target area and hackground
area.
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It can be seen from the ellipses in the middle column that the 8. REFERENCES
overlap between the two ellipses increases as more and more
camouflage is applied. 1. Gerhardt, G., R., Meitzler, T., J. Performance assessment

methodology for ground vehicle infrared and visual
Several distance measures are computed for each camouflage signature countermeasures (CMs), SPIE, Vol. 1687, pp
level. Table 6.1 shows the distances. An earlier similarity 334-341, 1992.
measure was computed as the overlapping area from the two
covariance matrices. This common area could be interpreted as 2. Nyberg, S, Uppsdll, M, Bohman, L, An approach to
the Bhattacharrya distance if the distributions for target and assessment of camouflage methodology, SPIE proceeding
background are uniform and restricted to the covariance no 1967: Aerospace Sensing, April 1993,
ellipse. However, the usual Bhattacharrya measure performed
better. 3. Reed, T. R., du Buf, J., M., H.. A review of recent texture

segmentation and feature extraction techniques, CVGIP,
Table 6.1 Distances for different degrees of camouflage. Image Understanding, Vol. 57, No. 3, May, pp. 359-372,
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